
20 Sp(2N) and Chiral Theories

20.1 Duality for Sp(2N)

Sp(2N) SU(2F ) U(1)R

Q F−1−N
F

We’ll use the notation that Sp(2) ∼ SU(2). Recall that the adjoint of
Sp(2N) is the two-index symmetric tensor.
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2N 1
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N(2N + 1) 2N + 2
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The one-loop β function coefficient for N > 4 is

b = 3(2N + 2)− 2F (20.1)

The moduli space is parameterized by a “meson”

Mji = ΦjΦi (20.2)

The flavor singlet chiral superfields transform as:

U(1)A U(1)R

Λb/2 2F 0
PfM 2F 2(F − 1−N)

(20.3)

Where

PfM = εi1...i2F Mi1i2 . . .Mi2F−1i2F . (20.4)

So we see it is possible to generate a dynamical superpotential

Wdyn ∝
(

Λ
b
2

PfM

) 1
N+1−F

(20.5)
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for F < N + 1. For F = N + 1 one finds confinement with chiral symmetry
breaking

PfM = Λ2(N+1) . (20.6)

For F = N + 2 one finds confinement without chiral symmetry breaking
with a superpotential:

W = PfM (20.7)

A solution to the anomaly matching for F > N − 2 is given by:

Sp(2(F −N − 2)) SU(2F ) U(1)R

q N+1
F

M 1 2(F+2−N)
F

This theory admits a unique superpotential:

W =
Mji

µ
φjφi (20.8)

For 3(N + 1)/2 < F < 3(N + 1) we have an infrared fixed point. For
N + 3 ≤ F ≤ 3(N + 1)/2 the dual is infrared free.

20.2 Why Chiral Gauge Theories are Interesting/Confusing

We would like to use our new non-perturbative methods for understanding
SUSY gauge theories to analyse dynamical SUSY breaking. Usually vector-
like gauge theories don’t break SUSY, while chiral gauge theories can. If
a theory is vector-like we can give masses to all the matter fields. If these
masses are large we have a pure gauge theory that has gaugino condensation
but no SUSY breaking. By Witten’s index argument we can vary the mass
but the number of bosonic minus fermionic vacua doesn’t change. If taking
the mass to zero does move some vacua out to infinity, then the massless
theory has the same number of vacua, and SUSY is not broken.

As our first example of a chiral gauge theory consider

SU(N) SU(N + 4)

Q

T 1
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we will not write down the charges under the two U(1)’s. This theory is
dual to

SO(8) SU(N + 4)

q

p S 1

U ∼ detT 1 1

M ∼ QTQ 1

with a superpotential

W = Mqq + Upp (20.9)

This theory is vector-like! The dual β function coefficient is:

b = 3(8− 2)− (N + 4)− 1 = 13−N (20.10)

So the dual is IR free for N > 13.

20.3 S-Confinement

We need some semi-systematic way to survey chiral gauge theories. One way
to do this is to generalize well understood dual descriptions. The simplest
of these is confinement without chiral symmetry breaking in SU(N) with
N + 1 flavors. Recall the confined description had a superpotential

W =
1

Λ2N−1

(
detM −BMB

)
(20.11)

The crucial features of this description were that since there was no chiral
symmetry breaking and that the meson-baryon description was valid over
the whole moduli space. That is there was a smooth description with no
phase-transitions. This is because the theory obeyed complimentarity, every
static source could be screened by the squarks. To generalize this we will
need to have fields that are fundamentals of SU or Sp and spinors of SO.
We will only consider theories that have a superpotential in the confined
description. This requirement gives us and index constraint. Theories that
satisfy these conditions are called s-confining.

Consider a gauge theory with one gauge group and arbitary matter fields.
Choose an anomaly free U(1)R such that φi has charge q while all other fields
have zero charge. The charge q is determined by anomaly cancelation:

0 = qT (ri) + T (Ad)−
∑
j

T (rj) (20.12)
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Since we can do this for any field, and for each choice the superpotential has
R charge 2 we have

W ∝ Λ3

[
Πi

(
φi

Λ

)T (ri)
]2/(

∑
j

T (rj)−T (Ad))

(20.13)

There may in general be a sum of terms corresponding to different con-
tractions of gauge indices. Requiring that this superpotential be homorphic
at the origin means there should be integer powers of the composite fields,
which implies integer powers of the fundamental fields. Unless all the T (ri)
have a common divisor we must have∑

j

T (rj)− T (Ad) = 1 or 2 for SO or Sp

2(
∑
j

T (rj)− T (Ad)) = 1 or 2 for SU (20.14)

The differing cases come from the different conventions for normalizing gen-
erators, for SO and Sp we have T ( ) = 1, while for SU we have T ( ) = 1/2.
Anomaly cancelation for SU and Sp require that the left hand side be even.
This condition is necessary for s-confinement, but not sufficient. One has to
check explicitly that for SO the sum has to be 1. Thus we have

∑
j

T (rj)− T (Ad) =

{
1 for SU or SO
2 for Sp

(20.15)

This condition gives a finite list of candidate s-confining theories.
We can check whether candidate theories that satisfy the index con-

straint really are s-confining by going out in moduli space. Generically we
break to theories with smaller gauge groups and singlet fields that decouple
in the infrared. If the smaller gauge theory is not s-confining the the original
theory was not s-confining. Alternatively if we have an s-confining theory
and we go out in moduli space we must end up with another s-confining
theory. Using these checks one can go through the list of candidates. For
SU one finds that the following theories are the only ones that satisfy the
conditions for s-confinement.

4



SU(N) (N + 1)( + )

SU(N) + N + 4

SU(N) + + 3( + )

SU(5) 3( + )

SU(5) 2 + 2 + 4

SU(6) 2 + 5 +

SU(6) + 4( + )

SU(7) 2( + 3 )

Lets consider the special case:

SU(2N + 1) SU(4) SU(2N + 1) U(1)1 U(1)2 U(1)R

A 1 1 0 2N + 5 0
Q 1 4 −2N + 1 0
Q 1 −2N − 1 −2N + 1 1

2

This theory has a confined description

SU(4) SU(2N + 1) U(1)1 U(1)2 U(1)R

QQ 3− 2N −4N + 2 1
2

AQ
2 1 8 −2N + 7 0

ANQ 1 −2N − 1 2N2 + 3N + 1 1
2

AN−1Q3 1 −6N − 3 2N2 − 3N − 2 3
2

Q
2N+1 1 1 4(2N + 1) −4N2 + 1 0

with a superpotential

W =
1

Λ2N

[
(ANQ)(QQ)3(AQ

2)N−1 + (AN−1Q3)(QQ)(AQ
2)N +

(Q2N+1)(ANQ)(AN−1Q3)
]

(20.16)

The equations of motion reproduce the classical constraints, and integrating
out a flavor gives confinement with chiral symmetry breaking.
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20.4 Deconfinement

Consider the odd N theory with F ≥ 5

SU(N) SU(F ) SU(N + F − 4) U(1)1 U(1)2 U(1)R

A 1 1 0 −2F −12
N

Q 1 1 N − F 2− 6
N

Q 1 −F
N+F−4 F 6

N

We can imagine that A is a composite meson of a s-confining Sp theory

SU(N) Sp(N − 3) SU(F ) SU(N + F − 4) U(1)1 U(1)2 U(1)R

Y 1 1 0 −F −6
N

Z 1 1 1 0 FN 8

P 1 1 1 0 F (1−N) 6− 6
N

Q 1 1 1 N − F 2− 6
N

Q 1 1 −F
N+F−4 F 6

N

with a superpotential

W = Y ZP (20.17)

The SU(N) group has N + F − 3 flavors so we can using our standard
duality: to find another dual:

SU(F − 3) Sp(N − 3) SU(F ) SU(N + F − 4)
y 1 1
p 1 1 1
q 1 1
q 1 1
M 1 1
L 1 1
B 1 1 1

with

W = Mqq + Bqp + Lyq (20.18)
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But Sp(N − 3) with N + 2F − 7 fundamentals has an Sp(2F − 8) dual:

SU(F − 3) Sp(2F − 8) SU(F ) SU(N + F − 4)
ỹ 1 1
p 1 1 1
q 1 1
q 1 1
M 1 1
l 1 1
B 1 1 1

a 1 1 1

H 1 1 1
(Ly) 1 1

with

W = aỹỹ + Hll + (Ly)lỹ + Mqq + Bqp + (Ly)q (20.19)

which, after integrating out (Ly) and q becomes

W = aỹỹ + Hll + Mqlỹ + Bqp (20.20)

With F = 5 we have a gauge group SU(2)×SU(2) and one can show (using
the fact that gauge invariant operators have dimensions larger than one)
that for N > 11 this theory has an IRFP. One can also show that some
of the fields are IR free. Integrating out one flavor completely breaks the
gauge group and the light degrees of freedom are just the composites of
the s-confining description. With the other duals we would have to discuss
strong interaction effects to see that we get the correct confined description.
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